© N o 0o A W N =

w N = o ©

o =

6

17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

39
40

INQUIRE: INteractive Querying for User-aware
Informative REasoning

Anonymous Author(s)
Affiliation
Address

email

Abstract: Research on Interactive Robot Learning has yielded several modalities
for querying a human for training data, including demonstrations, preferences, and
corrections. While prior work in this space has focused on optimizing the robot’s
queries within each interaction type, there has been little work on optimizing over
the selection of the interaction type itself. We present INQUIRE, the first algo-
rithm to implement and optimize over a generalized representation of information
gain across multiple interaction types. Our evaluations show that INQUIRE can
dynamically optimize its interaction type (and respective optimal query) based on
its current learning status and the robot’s state in the world, resulting in more ro-
bust performance across tasks in comparison to state-of-the art baseline methods.
Additionally, INQUIRE allows for customizable cost metrics to bias its selection
of interaction types, enabling this algorithm to be tailored to a robot’s particular
deployment domain and formulate cost-aware, informative queries.

Keywords: Active Learning, Learning from Demonstration, Human-Robot Inter-
action

1 Introduction

As we envision robots that adapt to novel tasks and environments after deployment, it is important to
consider how they can efficiently obtain training data to address this novelty. For robots that operate
in human spaces, the people around it can provide training data. Research in Interactive Robot
Learning has yielded many effective methods for obtaining training data via interaction between a
robot and a human teacher. While demonstrations are a popular type of interaction, other research
has examined robot learning from preferences [1, 2], corrections [3, 4], and binary feedback [5].

All of these interaction types differ according to how the agent queries the teacher, the constraints
placed on the teacher’s feedback, and how the agent should interpret the teacher’s feedback as train-
ing data [6]. In a demonstration, the teacher provides the trajectory that the robot should take starting
from a particular state. By contrast, a preference query involves the robot proposing a number of
possible trajectories, from which the teacher selects one. When seeking a correction, the robot
demonstrates a single trajectory that the teacher can modify in whole or in part. Binary feedback
again involves the robot demonstrating a single trajectory, but it only receives a positive or negative
reward. As a result, the fype of interaction used to query the teacher influences the training data
available to the learning agent and subsequently influences the robot’s learning performance [6].

Prior work in Active Learning has investigated how to formulate informative queries by maximizing
the expected information gain resulting from the teacher’s feedback. However, this work typically
assumes that the robot uses a single interaction type for all queries, and thus does not incorporate
feedback obtained via multiple interaction types. Furthermore, the optimal interaction type depends
on the robot’s task knowledge (which changes over time), the robot’s query state (i.e., its state within
its environment at the time it queries the teacher), and domain-specific considerations (e.g., the time
or effort required for a teacher to respond to each interaction type [7]).

Our work is motivated by this question: How can a robot optimize both the type and content of its
queries to a human teacher based on what information it needs at any given moment? We intro-

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

41
42
43
44
45
46
47
48
49

50

51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
7
78

79
80
81
82
83
84
85
86
87

88
89
90
91
92

duce INQUIRE: a robot learning system that performs this optimization by representing multiple
interaction types in a single unified framework, enabling the robot to directly estimate and com-
pare the expected information gain of its queries across multiple interaction types. We evaluated
INQUIRE against two state-of-the-art interactive learning methods that use a single or fixed pattern
of interaction types. We analyzed the effect of domain on INQUIRE’s performance and selection
of interaction types over time by simulating four reward-learning problems in robotics domains.
We found that INQUIRE learned reward functions that were more accurate and resulted in better
task performance than either baseline, with particular strength in adapting to low-information query
states (i.e., repeated states in which the robot has already received feedback).

2 Related Works

One popular approach to learning from human feedback is learning from demonstrations, either
via imitation learning [8] or inverse reinforcement learning [9]. However, there is a wealth of other
approaches to learning from human feedback, including learning from preferences [1, 2], labels [10],
and corrections [4, 3]. Notably, these approaches optimize queries within a particular interaction
type, typically by choosing queries that maximize volume removal [11] or maximize the information
gain from the teacher’s response to that query [1]. Prior work has also investigated the use of fixed
strategies for selecting interaction types; for example, requesting a fixed number of demonstrations
before requesting preferences for the remaining queries [12, 13]. [14] incorporates more interaction
types (demonstrations, labels, and feature queries) and contributes both rule-based and decision-
theoretic strategies for query selection.

The set of possible techniques to learn from human feedback is vast and varied, and several attempts
have been made to impose a unifying and consistent framework across them. [7] identifies four pri-
mary interaction archetypes (Showing, Categorizing, Sorting, and Evaluating) based on how people
perceive them; [15] describes interactions in terms of the explicit and implicit information they con-
vey; [6] situates interactions in the realm of human-in-the-loop learning and surveys how interaction
types result in different effects on a teacher’s ability to provide informative feedback. Our work sim-
ilarly contributes a perspective on the unifying and differentiating features of interaction types: we
propose a generalized framework for computing information gain across multiple interaction types.
We focus on four different interaction types corresponding to the archetypes in [7] and empirically
show the effects of dynamically selecting interaction types in robot learning.

3 Approach

We define a query as a set of possible choices presented to the teacher, and feedback as the teacher’s
selected choice in response to a query. Our goal is to enable a robot to (1) efficiently query a teacher
using multiple interaction types, and (2) learn from feedback obtained via these interactions. We
ground this goal in the problem of learning a distribution WV over feature weight vectors w € W,
each resulting in a linear reward function r(¢) = ¢(t) - w, where ¢(t) is the feature vector of a
trajectory ¢. Thus, our goal translates into (1) selecting queries and interaction types that minimize
uncertainty over VWV, and (2) updating W over feedback from multiple interaction types.

We present INQUIRE (Alg. 1), an algorithm comprised of three key steps for each query: (1) se-
lecting the optimal interaction type ¢ and corresponding query ¢; that maximizes the information
gain over the weight distribution W (approximated as the sample set €2), (2) recording the teacher’s
feedback to that query in a feedback set F', and (3) updating the weight distribution YV such that it
maximizes the likelihood of all feedback in F. To generalize across multiple interaction types, we
must contend with the differing formulations of query and feedback corresponding to each type. We
follow the framing presented in [6], where each interaction type consists of a query space Q(s) (the
set of possible queries that may be posed by the agent in state s) and a choice space C(q) (the set of
possible teacher feedback, i.e., the choices available to the teacher in response to a query ¢ € Q(s)).

For a demonstration, let 7 (s) represent the set of all possible trajectories originating from the initial
state s. The robot (implicitly) enables the teacher to demonstrate any trajectory in this set, and thus
its query space is Q(s) = {7 (s)} (i.e., a single query consisting of the entire trajectory space). The
teacher’s choice space is C = T (s) (any trajectory within that space). For a preference, the robot
queries the teacher with two trajectories ¢ = {to,t1 | to,t1 € T (s)} who then chooses either ¢

93
94
95
96
97
98

99
100
101
102
103

104

105
106
107

108
109
110

Table 1: Each interaction involves separate query spaces, choice spaces, and choice implications.

(SIS:EZ Query (éll;glccee Choice Implication
€ Qs c € C; = (ct,c™
Qi(s) q € Qi(s) Ci(q) i(q) ()
Demo. {7} T T ctteT ¢ T\t
Pref. T xT {to,t1},to,t1 €T {to,t1} ct:te{to,t1} ¢ :{to,t1}\c"
Corr. T teT T ct:teT ¢ :q
. c=0 = ¢c":T\q ¢ :q
Binary T teT {0,1} c=1— ctiq ¢ :T\gq
Algorithm 1 INQUIRE - Overview Algorithm 2 INQUIRE - Generate Query
Input: Set of query states .S Input: s (state), Z (interaction types), 2 (weight samples)
Parameters: K (# of queries), Z (interaction Output: Query ¢*
types)) . 1: T <« uniformly_sample_trajectories(s)
Output: Weight vector w 2: Compute E : {E, ,,Vt,t' € T,w € Q} (Eq. 4)
3: for each interaction type ¢ € Z do
I: F« {} 4 Q<+ Qi(s) (See Table 1)
2: Q + M random initial weight vectors 5: C+{Ci(q),Vqg € Q} (See Table 1)
3: for K iterations do 6: Compute info gain matrix G from E (Eq. 9)
4: s < next query state in S 7. + aremax., fely)
5: q; < generate_query(s,Z, ©2) (Alg. 2)) 1 gl ? ZCGC“’“E% hew
8: 9 log(X;) ZcECq,wEQ G‘LCWJ
6: F « F U {query_teacher(q;)} 9: if information gain g > g* then
7: 2 « update_weights(F) 10: g g
8: w* < mean(N) 11: q <+ q {Store query with highest info. gain}
9: return w”* 12: return ¢*

or t;. The query space is Q(s) = T (s) x T (s) and the teacher’s choice space is C'(q) = {to,t1}.
For a correction, the robot executes one trajectory ¢ € 7 (s) which the teacher then modifies to
a preferable behavior. The agent’s query space is (s) = T (s) and the teacher’s choice space is
C(q) = T (s). For binary feedback, the robot executes a single trajectory ¢ € 7 (s), and the teacher
indicates a positive or negative reward. The agent’s query space is Q(s) = 7T (s) and the teacher’s
choice space is C(q) = {0, 1}.

The implication of the teacher’s choice ¢ € C(q) is a set of accepted trajectories ¢t and set of
rejected trajectories ¢~, which we define in Table 1 and use later to calculate information gain.
Since the set of all possible trajectories originating from s (represented by 7 (s)) is potentially
infinite, we approximate it as the set 7' containing /N trajectory samples originating from the state s
and consisting of randomly selected actions.

3.1 Query Optimization

When optimizing the agent’s query, our goal is to greedily select one that maximizes the agent’s
expected information gain over WV after receiving any feedback from the choice set (summarized in
Alg. 2). Selecting a query involves optimizing over information gain (IG) as follows:

¢; = argmaxEc,(q) IGOWV | ¢)] e9)
q€Qi(s
M - P(c|w)
= arg max {P(c|w) loge=s——"-—"— 2)
q€Q;(s) cECZi(q)% Zw’eﬂ P(C|’U)/)

where (2 contains M samples of the distribution . The expansion from Eq. 1 to 2 follows the
derivation presented in [1]; see Appendix A.1 for intermediate steps. We adopt the commonly-used
Boltzmann-rational equation to define P(c|w):

S icet ef-e(t)-w
Zt€c+ Ue— efrot)w

P(clw) = 3)

111
112
113
114

115
116
117
118
119

120

121

122
123
124

125

126
127
128
129
130

131

132
133
134

where ¢(t) returns the feature trace of the trajectory ¢; that is, the sum over the feature vectors of all
states visited in trajectory ¢.! 3 is a parameter representing the expected optimality of the teacher’s
feedback with respect to w. We assign a value of 3 = 20 across all interaction types (selected
through empirical evaluation).

To minimize the computational complexity of solving for Eq. 2, we reformulate it as a series of
operations over a |Q| x |C| x || probability matrix P, where P, .., represents the probability
(according to weight sample w € () that the teacher will select choice ¢ in response to query q. To
construct P,letEbe a N x N x M (i.e., |T'| x |T| x |2|) matrix representing exponentiated rewards:

E; ., = el ot)w — [E + ET] = POt w 4 oBo(t)w 4)

t,t!w

With E in hand, we next define the probability matrices of each interaction type as follows:

PE;}?S) = |Ey© Z ET, (since |@Q| = 1 for demonstrations) (®)]
= teT C,w

P — _(E o (E+ ET))T Eo (E+ ET)] (c € {0, 1} for prefs.) (6)
L €,90,q1,w

P = (B0 (B4 BT, o

nglzrfg =1|1- <E0 0« Z ETt> JEo O« Z ET, (c € {0, 1} for binary rewards) (8)
L teT teT

c,q,w

where @ represents an element-wise division of two matrices (i.e., (A®B);; = A;;/B;;) and avis a

normalization factor such that) Pf}’,m = 1. For derivations, see Appendix A.3. The main effect

of this formulation is that it enables tractable optimization over multiple interaction types by
sharing a common representation E. To solve for the optimal query ¢; using interaction type 7, we
use P to construct a |Q| x |C| x || information gain matrix G (*):

, , M-P{L, A
Gyt =Pyl log ©) q; = argmax y | Gy, ©)
Zw’eﬂ q,c,w’ q

c,w

We then solve for the optimal interaction type itself. To perform a cost-weighted optimization, with
the aim of optimizing over both interaction cost and informativeness, A; may be set according to
domain-specific cost factors (e.g., the time or mental load involved in answering a query) for each
interaction type.?> To perform an unweighted optimization and maximize solely over the informa-
tiveness of each query, let \; be a constant value over all interaction types i € 7.

i* = arg max

1 i
(©)
1€T 10g(>\1) Z Gq;‘,c,w (10)

c,w

3.2 Update Weights from Feedback

After presenting the optimal query to the teacher, the agent receives feedback and appends it to a
feedback set F—a cumulative set that contains all feedback received by the agent thus far. Our goal
is to then update the weight estimate such that it maximizes the likelihood of all feedback in F:

et e o) w
ZtEc‘*'Uc_ ef-ot)w

w® = arg max H P(c|lw) = arg max H

« ceF « ceF

Y

'See Appendix B.1 for each domain’s definition of ¢.
*In our evaluations, we assign a cost of 20 to each demonstration, 15 to each correction, 10 to each prefer-
ence, and 5 to each binary query.

135

136
137

138

139
140
141
142
143
144
145

146
147
148
149
150
151
152
153

154

155
156
157
158
159
160

Param. Estimation Linear Dyn. System Linear Dyn. System Lunar Lander Lunar Lander Pizza Ar Pizza Ar
Static State] (c ing State) (Static State) (c ing State) (Static State) (Ci ing State) (Static State)

10 15 20 5 10 15 5 10 15 5 10 15 5 10 15 10 15 5 10 15 20
Query # Query # Query # Query # Query # Query # Query #
(a) Selected interaction types without cost-weighting
Param. Estimation Linear Dyn. System Linear Dyn. System Lunar Lander Lunar Lander Pizza Ar Pizza Ar
Static State] (c ing State) (Static State) (c ing State) (Static State) (Changing State) (Static State)
10 15 20 5 10 15 20 5 10 15 20 5 10 15 5 10 15 5 10 15 5 10 15 20
Query # Query # Query # Query # Query # Query # Query #

(b) Selected interaction types with cost-weighting

Figure 1: Heatmaps illustrating how INQUIRE selects different interaction types as it learns more
over time. These selections differ when deriving unweighted (top) or cost-weighted (bottom) in-
formation gain estimations. In the cost-weighted setting (bottom), INQUIRE selects more low-cost
binary queries than it does in the unweighted setting (top).

We calculate the gradient over w by differentiating over its log-likelihood given F:

6€(w) Z Zt€c+ /B) ¢j (t) : eﬂd)(t)wu _ EtECJrUc* 6 ! (bj(t) : eﬂd)(t)w

N 12
0w cEF Dteer €700 Dtectue- €7 12)
Diectue- B ¢5(t) - ef oD .
= Z ﬁ . ¢] (car) - te +ZU . Jeﬁ.qs(t).w (]ff ‘c"r‘ _ 1) (13)
ceF tEcTUc™

After receiving feedback from each query and updating F, we approximate €2 by randomly initial-
izing and then performing gradient ascent on each weight sample w € €.

4 Results

We simulate four types of learning problems in robotics using an oracle teacher to obtain controlled
evaluations. The oracle teacher, similar to INQUIRE, requires its own set of trajectory samples 7". It
then selects a response to a query via one of three mechanisms: returning the highest-reward trajec-
tory from its choice space (demonstrations/preferences), rejection sampling of trajectories followed
by selection of the trajectory with the highest reward-to-distance ratio from the queried trajectory
(corrections), and returning whether a query meets or exceeds a reward threshold (binary feedback).
Implementation details can be found in Appendix B.2.

The Parameter Estimation domain involves directly estimating a randomly-initialized, ground
truth weight vector w* containing 8 parameters. The Linear Dynamical System domain, inspired
by [1], simulates a controls problem and involves learning 8 parameters. The Lunar Lander domain
simulates a controls problem involving 4 parameters. The Pizza Arrangement domain simulates
a preference-learning problem involving 4 parameters. Each domain (except for Parameter Estima-
tion) has a static-state and changing-state condition indicating whether the robot must formulate all
queries from the same query state or not, respectively. For the full evaluation procedure and oracle
implementation details for each domain see Appendix B.

4.1 INQUIRE Query Selection

We first analyze how INQUIRE selects queries. Figure 1 reflects the changes in interaction type
selected by INQUIRE over time. Figure 1a first reports these interaction selections in an unweighted
query optimization setting, where all interaction types are assumed to be equally costly. In the
parameter optimization domain, INQUIRE requests corrections in the first 14-18 queries and then
requests preferences as the remaining queries. Demonstrations were not enabled in this domain. In
all other domains, INQUIRE requests a demonstration as its first query, then immediately switches

161
162

163
164
165
166
167
168

169

170
171
172
173
174
175

176
177
178
179
180
181
182
183

Distance - Linear Dynamical System Performance - Linear Dynamical System Cost - Linear Dynamical System

. N y 7
06 (Changing State) —Binary-only (Changing State) 06 (Changing State)
— Corrections-Only 09

% 05 — Demos-Only 3 % 05
£ == DemPref g 0.8 £
S 04 Preferences-Only £ S 04
° INQUIRE] b
3 o3 < 5 o7 3 o3
g &]
B 02 Z 06 B 02
a a
—_—
01 ¥-\ " oos 0.1
% 10 15 20 04 9 10 15 20 % 5 100 150 200
of Queries # of Queries Accumulated Query Cost
(a) Linear Dynamical System
Distance - Lunar Lander Performance - Lunar Lander Cost - Lunar Lander
. i . X
06 (Changing State) —Binary-Only ,f(changlng State) [06 (Changing State)
= Corrections-Only 0.9
% 05 L —Demos-Only 8 % 05 I
£ == DemPref g 0.8 £
S 04 Preferences-Only £ g 04
‘@ INQUIRE L ‘®
3 o3 @ - $ o3
g g 5
B 02 5 °° 3 o2
a & a ==
0.1 & 0.5 0.1 —_
- S
%0 5 10 15 20 04 10 15 20 %% 50 100 150 200
of Queries # of Queries Accumulated Query Cost
(b) Lunar Lander Task
Distance - Pizza Arrangement Performance - Pizza Arrangement Cost - Pizza Arrangement
Changing State| 1 hanging-State Changing State
06 (Changing State) __ ;.. . ipnc oy i_{Ghan) 06 (Changing State)
= Demos-Only 0.9 p
% 05 L\ — DemPref 8 % 05
£ Preferences-Only § 0.8 £
S 04 INQUIRE £ S 04
& S or =
3 o3 5~ 8 o3
g &]
3 oz e ¥ 0° 3 02
a S a
01 05 01
%% 10 15 20 04 9 10 15 20 A 50 100 150 200
of Queries # of Queries Accumulated Query Cost

(c) Pizza Arrangement Task

Figure 2: Metrics for the changing state condition in which the robot’s initial state changes with
each query. Error bars/regions represent variance across multiple evaluation runs with randomized
query states and initial weights.

to requesting preferences for the remaining queries (occasionally alternating between preferences
and demonstrations in the Lunar Lander domain).

After assigning different cost values to each interaction type, INQUIRE chooses more diverse inter-
action types in order to maximize its information-to-cost ratio. As shown in Figure 1b, this typically
results in INQUIRE posing more binary queries due to their relatively low cost. This pivot toward
binary queries may occur at the start (as seen in the linear dynamical system), middle (as seen in the
parameter estimation domain), or interspersed throughout the learning process (as seen in the lunar
lander domain).

4.2 Learning Performance

We now analyze the effect of INQUIRE'’s interaction type selections on its learning performance
and compare to two types of baselines. The first, DemPref [12], learns from 3 demonstrations and
then learns from preference queries by using a volume removal objective function. As our second
baseline, we compare INQUIRE against agents that use only one form of interaction: demonstra-
tions, preferences, corrections, or binary feedback. Note that the preference-only agent is formulated
according to [1] and thus represents this baseline method.

We first consider the changing-state formulation of each domain, where the robot is presented with a
new state for each query. Since the Parameter Estimation domain does not contain states, we exclude
it from this first set of results. Figure 2 illustrates this learning performance in the Linear Dynamical
System and Lunar Lander domains according to three key metrics. Distance measures the angular
distance between the ground truth feature weights (w*) and the algorithm’s estimated feature weight
w after each query. Performance measures the task reward achieved using a trajectory optimized
according to @ (the algorithm’s estimated feature weight after each query). Performance is scaled
between 0-1, with 0 and 1 representing the worst and best possible task rewards according to w*,

184
185
186
187

188
189
190
191
192
193
194
195

Distance - Parameter Estimation Performance - Parameter Estimation Cost - Parameter Estimation

(Static State) 1 (Static State) (Static State)
= Binary-Only

—Corrections-Only 09
® O

% o5 —DemPref 8 H
: PreferencesOnly § 0.8 £
g o INQUIRE g 2
8 03 £ 0.7 3
e <
€ -8 <
3 o2 4 06 /—' 2
3 a

01 ———— T oos

o 04

15 20

10
of Queries

10
of Queries

(a) Parameter Estimation Task

Distance - Linear Dynamical System Performance - Linear Dynamical System Cost - Linear Dynamical System
(Static State) 1 (Static State) (Static State)

0.6 == Binary-Only 0.6
= Corrections-Only 0.9
== Demos-Only
==DemPref
Preferences-Only
INQUIRE

Distance from w*
o o
5 e

Distance from w*
o
@
Task Performance
°
3

e —
0.1 0.5 0.1
%0 5 10 15 20 04 10 15 20 %% 50 00 150 200
of Queries # of Queries Accumulated Query Cost
(b) Linear Dynamical System
Distance - Lunar Lander Performance - Lunar Lander Cost - Lunar Lander
(Static State) 1 (Static State) (Static State)
06 = Binary-Only 06
— Corrections-Only 09 ——
% 05 —Demos-Only 3 /' % 05
£ { ~—DemPref g os £
S 04 Preferences-Only £ S 04
& 5 E
3 o3 INQUIRE 5 %7 8 o3
g &]
B 02 5 06 B 02
a it a

%% 5 10 15 20 04 9 10 15 20 A 50 100 150 200
of Queries # of Queries Accumulated Query Cost
(c) Lunar Lander Task
Distance - Pizza Arrangement Performance - Pizza Arrangement Cost - Pizza Arrangement
(Static State) 1 (Static State) (Static State)
06 = Corrections-Only 1111 ; Pt A 06
~—Demos-Only 0.9
% 05 — DemPref 8 % 05
£ Y Preferences-Only § 08 £
g o INQUIRE g g
@ £ 07 @
8 o3 5 $ o3
g BN —_— 2 5
@ 02 ~ % 06 g 0.2
a S — . 8 a
0.1 0.5 0.1
%0 5 10 15 20 04 5 10 15 20 %% 50 100 150 200
of Queries # of Queries Accumulated Query Cost

(d) Pizza Arrangement Task

Figure 3: Metrics for the static state condition in which the robot is presented with the same state for
all 20 queries. Error bars/regions represent variance across multiple evaluation runs with randomized
query states and initial weights.

respectively. Note that INQUIRE’s distance and performance metrics are achieved in the unweighted
condition. Cost-vs-Distance measures the relationship between the cumulative cost of each query
and the resulting distance between w and w* after each query. INQUIRE’s metrics in this graph are
achieved in the cost-weighted condition.

Figure 3 presents the same three metrics for the static-state condition in which all 20 queries must be
selected from the same initial state. Finally, we quantify these graphs by reporting the area-under-
the-curve (AUC) metrics for the distance, performance, and cost curves across all tasks. These
metrics are available in Appendix C. The AUC metrics indicate that, compared to the baseline meth-
ods, INQUIRE results in the best average learning performance (measured both by the distance
and performance plots in Figures 2-3) across all domains and dominates learning performance in
the static-state domains. INQUIRE also results in the best average distance-to-cost ratio across all
domains.

196

197
198
199
200
201
202
203

204

206
207
208
209
210
211
212

213
214
215
216
217
218

219

220
221
222
223
224

225
226
227
228
229
230

231

232

234
235
236
237
238
239
240

5 Discussion

The results show the importance of dynamically selecting interaction types according to the robot’s
current state. For example, demonstrations can be highly informative when provided in novel states,
but when the robot may only query a teacher from a single state, multiple demonstrations are likely to
be very similar (if not identical). As a result, receiving multiple demonstrations in a static query state
is uninformative. We see the benefits of dynamically selecting interaction types in Figure 3, where
INQUIRE outperforms all single-interaction methods by optimizing both query type and content to
maximize the informativeness of the query feedback.

INQUIRE selects the interaction type that, after receiving feedback, minimizes the entropy over its
distribution of weight estimates V. This distribution thus serves as a representation of the robot’s
current model of the task reward. Figure la illustrates how INQUIRE changes the query type as
it learns over time (represented by # of queries). This is particularly evident in the Parameter Es-
timation task, where the algorithm originally requests corrections until it has refined its model of
the task reward to a point where preferences become more informative (after 14-18 queries). Over-
all, dynamically adapting to the robot’s model of the task reward results in better performance than
adopting a fixed strategy for selecting interaction types (i.e., DemPref, which always requests one
demonstration before selecting preferences).

An added benefit of INQUIRE is that it can incorporate a cost metric to identify cost-aware, infor-
mative queries. The AUC metrics for the cost graphs indicates that INQUIRE selects queries that,
on average, minimize the cost-to-distance ratio across all domains. We expect that this cost metric
is domain-specific, and can represent a number of human factors that the algorithm should take into
account (e.g., the effort involved for a human to respond to each query type [6]). The cost metric
used in our study thus serves as an example of how INQUIRE can factor in interaction costs.

6 Limitations

Our evaluation is performed using feedback from an optimal oracle. Real human feedback, however,
is likely to be at least somewhat sub-optimal, and its severity likely depends on the interaction type.
For example, a non-optimal demonstration may be one that is sufficient but not ideal for completing
the task. In contrast, binary rewards offer only two feedback choices to the user, and thus a non-
optimal binary reward may indicate the opposite information from what the user intended to convey.

These examples illustrate how non-optimal feedback may need to be handled differently depending
on the interaction type, and thus, should affect INQUIRE’s estimation of information gain. Further-
more, INQUIRE does not yet have the ability to select the state in which it queries the teacher. Prior
work in Active Learning has shown that state selection can improve the informativeness of resulting
demonstrations [16], and we expect that optimizing over the query state in addition to query type
and content would improve the performance of INQUIRE.

7 Conclusion

We introduced INQUIRE, an algorithm enabling a robot to dynamically optimize its queries and
interaction types according to its task knowledge and its state within the environment. We showed
that using information gain to select not just optimal queries, but optimal interaction types, results
in consistently high performance across multiple tasks and state configurations. Future work will
include formal user studies to investigate our method’s efficacy with people of varied skillsets and
comfort with robots; incorporation of novel interaction types and other communication modalities;
and alternative representations of the reward function and feature spaces. Moreover, we are excited
at the possible extensions others might present by using our open-source framework?> for evaluating
and comparing active-learning agents across multiple environments and simulated teachers.

3Link removed for anonymous review

241 References

242 [1] E. Biyik, M. Palan, N. C. Landolfi, D. P. Losey, and D. Sadigh. Asking easy questions: A
243 user-friendly approach to active reward learning. In Conference on Robot Learning (CoRL),
244 pages 1177-1190, 2020.

245 [2] C. Wirth, R. Akrour, G. Neumann, and J. Fiirnkranz. A survey of preference-based reinforce-
246 ment learning methods. The Journal of Machine Learning Research, 18(1):4945-4990, 2017.

247 [3] T. Fitzgerald, E. Short, A. Goel, and A. Thomaz. Human-guided trajectory adaptation for
248 tool transfer. In Intl. Conf. on Autonomous Agents and MultiAgent Systems, pages 1350-1358,
249 2019.

250 [4] A. Bajcsy, D. Losey, M. O’Malley, and A. Dragan. Learning robot objectives from physical
251 human interaction. Proceedings of Machine Learning Research, 78:217-226, 2017.

252 [5] C. Celemin and J. Ruiz-del Solar. An interactive framework for learning continuous actions
253 policies based on corrective feedback. Journal of Intelligent & Robotic Sys., 95(1):77-97,
254 2019.

255 [6] Y. Cui, P. Koppol, H. Admoni, S. Niekum, R. Simmons, A. Steinfeld, and T. Fitzgerald. Un-
256 derstanding the relationship between interactions and outcomes in human-in-the-loop machine
257 learning. 2021.

258 [7] P. Koppol, H. Admoni, and R. Simmons. Interaction considerations in learning from humans.
259 Under Review, 2021.

260 [8] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
261 methods. ACM Comput. Surv., 50(2), apr 2017. ISSN 0360-0300. doi:10.1145/3054912. URL
262 https://doi.org/10.1145/3054912.

263 [9] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In ICML, vol-
264 ume 1, page 2, 2000.

265 [10] C.Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters. Active reward learning. In Robotics:
266 Science and Systems, 2014.

267 [11] D. Sadigh, A. Dragan, S. Sastry, and S. A. Seshia. Active preference-based learning of reward
268 functions. In RSS, 2017.

269 [12] M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh. Learning reward functions by integrat-
270 ing human demonstrations and preferences. RSS, 2019.

271 [13] B.Ibarz,J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from human
272 preferences and demonstrations in atari. NeurlPS, 31:8011-8023, 2018.

273 [14] K. Bullard, A. L. Thomaz, and S. Chernova. Towards intelligent arbitration of diverse active
274 learning queries. In IROS, pages 6049-6056, 2018.

275 [15] H.J.Jeon, S. Milli, and A. D. Dragan. Reward-rational (implicit) choice: A unifying formalism
276 for reward learning. In NeurlIPS, 2020.

277 [16] M. S. Lee, H. Admoni, and R. Simmons. Machine teaching for human inverse reinforcement
278 learning. Frontiers in Robotics and Al, 8:188, 2021.

http://dx.doi.org/10.1145/3054912
https://doi.org/10.1145/3054912

279 A Approach Details

280 A.1 Information Gain Derivation

Ecic,(q) IGOWV | 0)]

(CIW)}

—quc@)h% Plo)

o g o

wew

Pw)P(clw) | Plelw)
Po T [P e H

|
21

(]

P(clw)]
> wew Pw)P(clw’)

1 clw) - Io M - P(clw)
7 2 P toas]

281 Standard information gain equation:

IG(X,y)
= H(X) - H(X\y)

= > P(zly) - logP m|y > P(x)-logP(x)
rzeX zeX

282 Best query is returned by:

E. .~ 1G
max e|Ci(q) TGOV, 0)]

10

(14)

5)

(16)

amn

(18)

19)

(20)

21
(22)
(23)

(24)

(25)

283 Which we evaluate as follows:
Ecic, (g IGOV, ¢)]
— HOW) = Fyje,(q) [HOVC)]
v o POV) + By 2P (W)
=Ew,cic;(q) logP(W]c) — logP(W)] (see proof in Sec. A.1.1)
PWle)
PW)

)

Pe) Y [P(wc) : 1ogP1§C(S’)”

weW

=Ew cici(q) [l og

=]EW,C\Cz‘(q) |:10g

- ¥

ceCi(q)

>

ceCi(q)

- 5 5 o]

ceCi(q) weWw

(by Bayes’ rule)

P)P(clw) | P(clu)
P wZW{ Py ey

= clw) - lo P(c|w)

B czu 2l { Pl loes P p(dw/)}
— clw 0 M

) CE;q) 1%:9 { (o] gzw'en P(C|wl)]

284 Where () contains M samples of the distribution W.

285 A.1.1 Proof of Eq. 29

Ew.cici(q) logP(W|c)] — Eyy [logP(W)]

Z P(w Z P(c|w) -logP(w|c) Z P(w) - logP(w

weW cEC (q) weW
= Z P(w) - Z P(clw) -logP(w|c) | —logP(w)
weW L \c€Ci(a)

= > Pw)-| Y Plcw)-logPwle)— Y P(cw)-logP(w)

weEW | ceCi(q) ceCi(q)
- Z P(w) - Z P(clw) - [logP(w|c) — logP(w)]
weW ceCi(q)

= Eyy c|c;(q) logP(W|c) — logP(W)]

286 A.2 KL Divergence

287 Standard KL divergence equation:

KLPIQ) = 3 [Po) 1o

rzeX

0]

288 Best query is returned by:
max E,jc.) [KL(POVIE)| [POV))

11

(26)
27)
(28)
(29)

(30)

3D

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

289

290

291

292

293

294

295

Which we evaluate as follows:

Eejc;(q) KL
= Ecj0,(g) [KL(P(W|e)||P(W))]

= Ecici(a)

=]Ec|ci(q>

-5

ceC;

Which is equivalent to Eq. 32.

(9)

A.3 Probability Matrix Derivations

weW

P(w]c) - log P(?)';)H

. [reek
[P g 100

P(e)

ew[wi)

w

In the demonstration case, we can define P as follows:

(demo) __

q,C,w

PERICARS

65'¢(t)"*’

ZtEq

PERICARE®

N D ter efot)w

T
E 0,ct,w

Eg

B ZteT ETO,t,w

@ZEt

teT

(since ¢ = 1" for demonstrations)

(since there is a 1-1 correlation between ¢ and ¢ in demos)

q,C,w

where @ represents an element-wise division of two matrices (i.e., (A @ B);; = A;;/B;;).

In the preference case:

P(pref) _

q,c,w T

eBréet)w
ZtEq eﬁ~¢(t)-w

eBo(c™)w

T eBdla)w 4 B dla)w

Since cp = ¢

+

(since ¢ = (qo, ¢q1) in preferences)

+

=qandcy = ¢ =qi:

eB#(q0)-w
- Lﬁ«b(qo)w ¥ ePolaw’ efdla)w + efdla)w |

E

90,91,w

eBola)w]

ET

q0,91,wW

In the corrections case:

(corr)

q,cw

eBo(ct)w

E+E]
— [Eo (E+E"),ET 0 (E+ET)]

qo0,91,wW

" [E+ET]_
=[E" o

T
q,C,w

q,C,w

(E+E")]

66'¢(C+)'w —+ eﬂ'¢(‘Z0)'W

q,c,w

'[E+ET

90,q1,w | .

¢,40,91,wW

(since ¢ ¢ g and |g| = 1 in corrections)

(since there is a 1-1 correlation between c and ¢™ in corrections)

12

(45)
(46)

(47)

(48)

(49)

(50)

(G

(52)

(53)

(54)

(55)
(56)

(57)

(58)

(59)

(60)

(61)

(62)

296
297

298

299

300

301
302
303

304
305

306

307

308
309
310
311
312
313
314
315
316

317
318
319
320

321
322
323

324

326
327

In the binary feedback case, we compare the likelihood of the teacher demonstrating ¢ to the average
likelihood of demonstrating any other trajectory in 7

r (demo) (demo)
pomy) _ 1- PT,q-,w PT,q,w

ver = | a(T] - 1)’

(where « is a normalization factor s.t. Z PO™) — 1) (63)

q,c,w

c

(demo) P(demo)
T,q,w T,q,w
=1 R _Lae 64
A (64)
= 1—<E0T®aZEt>,EOT®aZEt (65)
L teT teT

¢,q,w

__pp(demo)

1
wherea:ﬁﬁ-P

(demo)
T,qw

A.4 Gradient Derivation

B-¢(t)-w B-o(t)-w
{(w) = log H Liect © — = Z llog Liec ©] (66)

B-¢(t)-w
cEF D tectue- ccF Dtectrue— €700

-3 [mg (Z eﬁ~¢<t>-w> —log< ¥ eﬁ'¢(t)'w>] (67)

ceF tect tectUc—

A.5 Training Parameters

We set a high convergence threshold (10~3) when converging each weight sample in order to main-
tain sparsity within {2 (which becomes less sparse as F grows with more queries), and then fully
converge (threshold 10~°) to report the weight estimate & after each query.

Step size of 5x10~%. (alpha set to 0.75 in our experiments) We enforce Vw € W, ||w|| = 1. Define
N, M, K, etc

B Evaluation Details

B.1 Domain Implementations

Domain #1: Parameter Estimation This task involves directly estimating a randomly-initialized,
ground truth weight vector w* containing 8 parameters. This represents a generic learning problem
relevant to many robotics tasks, such as learning the relative importance between task outcomes
according to a user’s preference. There is no “state” in this domain, and each “trajectory” consists
of a single sample of the weight vector. As a result, we do not enable demonstration queries in
this domain, as the resulting feedback would be akin to directly providing w* to the algorithm. The
feature representation ¢ of a sample returns the sample itself. Since ||w|| = ||w*|| = 1, the reward
of any sampled weight vector directly reflects the cosine similarity between it and the ground truth
vector (r(w) = w - w* = cos(6)).

Domain #2: Linear Dynamical System We consider a simplified Linear Dynamical System rep-
resenting a robot that optimizes its controls according to a learned task objective. We represent the
dynamics of the robot’s state x as dxz/dt = Ax(t) using a randomized dynamics matrix A. An
optimal control vector is one that results in a trajectory of states maximizing ﬁ Y oser O(s) - wr

We define the feature representation ¢(s) of a state s as the concatenation of the element-wise, ab-
solute difference between x(t) and the goal state, and the dynamics u(t). We experiment with an
8-dimensional feature-space (4 state elements and 4 corresponding controls).

In a demonstration query, the oracle provides a trajectory (produced by simulating the execution
of a control vector) from the initial state that maximizes the total reward. In a preference query,
the algorithm proposes two trajectories and the oracle selects the higher-rewarding option of the
two. In a corrections query, the algorithm proposes a trajectory and the oracle returns a trajectory

13

328
329

330
331
332
333
334

335
336
337
338
339
340

341

342
343
344

346
347

348
349
350

351
352

353

354

355
356
357

358

359

that maximizes the reward-to-similarity ratio. In a binary feedback query, the algorithm proposes a
trajectory and the oracle indicates whether it results in reward that exceeds its internal threshold.

Domain #3: Lunar Lander We define a w* that results in a Lunar Lander agent efficiently moving
from its start state to an upright pose on the landing pad. We use the same feature representation as
in [12], consisting of four features: the lander’s angle, velocity, distance from the landing pad, and
final position with respect to the landing pad. We implement each query type in the same manner as
in the Linear Dynamical System.

Domain #4: Pizza Arrangement We approximate a preference-learning task in which the robot
learns to place toppings on only the left side of a pizza, with uniform spacing between them. We
define each “trajectory” as the next action the robot should take from the current pizza state; thus,
the trajectory is defined as the (x, y)-coordinate of the next topping to be placed. The feature rep-
resentation consists of four features: the x and y position of the topping, its distance to its nearest-
neighboring topping, and the difference between that distance and 4cm.

B.2 Oracle Implementation

When responding to a query, the oracle requires its own set of trajectory samples. Similar to IN-
QUIRE, we derive this set by uniformly sampling IV trajectories; however, the two sample sets are
kept separate, and so we distinguish the oracle’s trajectory set as 7" (resampled for each query state).

Demonstration/Preferences The oracle returns the highest-reward trajectory (according to w™)
from a uniformly-sampled trajectory set 7" (for demonstrations) or from the pair of queried tra-
jectories C(q) (for preferences):

Oraclegemo($) = argmax (¢(¢) - w™) Oraclepre(s) = argmax (¢(t) - w™) (68)
teT’ teC(q)

Corrections The oracle produces 7’ by performing rejection sampling; it uniformly samples trajec-
tories and accepts only those with a reward greater than or equal to the queried trajectory ¢ until 7’
contains N trajectories:

Vte T o(t)-w* > dlq) - w* (69)
After producing this trajectory set, the oracle selects the trajectory with the highest ratio of reward-
to-distance from the queried trajectory:

Ar(t)
Oracle.o(s) = arg max 70
() = e o) o
o o(t) Wt —o(g) - w” et
A, (t) = min Ayt) = min S (71)

PR () - — 6(q) -

The distance metric § between two trajectories is domain-specific; see the Appendix for details.

Binary Feedback The oracle produces 7’ by uniformly sampling N trajectories and produces a
cumulative distribution R over ground-truth rewards for 7”. It then selects a positive or negative
reward indicating whether the agent’s query g meets or exceeds a threshold percentile «:

+ R -¢(q) =z a

72
— otherwise (72)

R={w* ¢(t),Vt e T'} Oraclepyry (s) = {
B.3 Evaluation Procedure

C AUC Tables

14

Algorithm 3 Evaluation Procedure

Input: generate_query and update_weights methods according to algorithm being tested
Parameters: K (# of queries), I (# of tasks), J (# of runs per task), X (# of test states per
task),

1: for each of I tasks do

2: Generate ground truth reward function w*

3: Generate X test states

4: Generate K query states

5. Compute optimal trajectory ¢y, for each test case using w*

6

7

8

Compute least-optimal trajectory ¢, for each test case using w*
for each of J runs do
for each of K queries do

9: § < next query state

10: q* < generate_query(s,Z, §2)
11: F < F+ query_oracle(q*)
12: Q < update_weights(F)
13: @ < mean(Q)
14: Record distance: %(ww)
15: for each of X test states do
16: Compute optimal trajectory ¢ from the test state according to w
17: Record performance: Jé}ﬁ:j ;_ipg(;n)n)“ w
DISTANCE

Parameter Dynamical System Dynamical System LunarLander Lunar Lander Mean w*
Agent Estimation (Static State) (Changing State) (Static State) (Changing State) Distance
Binary-only 7.44 4.87 4.91 6.61 6.06 5.98
Corrections-only 3.01 4.43 4.01 4.02 3.80 3.85
Demo-only n/a 4.26 2.10 3.35 1.91 2.90
Preferences-only 4.30 4.34 4.45 2.31 2.34 3.55
INQUIRE 2.98 2.46 2.59 1.62 1.67 2.26

(a) AUC values for the distance plots, with darker cells indicating lower (better) values.

PERFORMANCE

Parameter Dynamical System Dynamical System Lunar Lander Lunar Lander Mean Task
Agent Estimation (Static State) (Changing State) (Static State) (Changing State) | Performance
Binary-only 15.01 16.54 16.90 16.99 17.90 16.67
Corrections-only 19.14 16.53 17.19 18.02 18.33 17.84
Demo-only n/a 16.76 18.15 18.61 19.32 18.21
Preferences-only 17.74 16.55 16.74 18.63 19.05 17.74
INQUIRE 19.15 17.81 17.83 18.86 19.33 18.60

(b) AUC values for the performance plots, with darker cells indicating higher (better) values.

COST

Parameter Dynamical System Dynamical System LunarLander Lunar Lander Mean Query
Agent Estimation (Static State) (Changing State) (Static State) (Changing State) Cost
Binary-only 64.15 43.18 43.60 60.65 53.58 53.03
Corrections-only 36.39 51.68 46.02 41.91 42.57 43.71
Demo-only n/a 43.99 27.94 37.09 26.07 33.77
Preferences-only 42.41 42.73 43.92 22.90 23.18 35.03
INQUIRE 37.68 36.39 35.92 22.98 23.71 31.34

(c) AUC values for the cost plots, with darker cells indicating lower (better) values.

Figure 4: Area-Under-the-Curve (AUC) values summarizing Figures 2-3

15

	Introduction
	Related Works
	Approach
	Query Optimization
	Update Weights from Feedback

	Results
	INQUIRE Query Selection
	Learning Performance

	Discussion
	Limitations
	Conclusion
	Approach Details
	Information Gain Derivation
	Proof of Eq. 29

	KL Divergence
	Probability Matrix Derivations
	Gradient Derivation
	Training Parameters

	Evaluation Details
	Domain Implementations
	Oracle Implementation
	Evaluation Procedure

	AUC Tables

