
INQUIRE: INteractive Querying for User-aware
Informative REasoning

Anonymous Author(s)
Affiliation
Address
email

Abstract: Research on Interactive Robot Learning has yielded several modalities1

for querying a human for training data, including demonstrations, preferences, and2

corrections. While prior work in this space has focused on optimizing the robot’s3

queries within each interaction type, there has been little work on optimizing over4

the selection of the interaction type itself. We present INQUIRE, the first algo-5

rithm to implement and optimize over a generalized representation of information6

gain across multiple interaction types. Our evaluations show that INQUIRE can7

dynamically optimize its interaction type (and respective optimal query) based on8

its current learning status and the robot’s state in the world, resulting in more ro-9

bust performance across tasks in comparison to state-of-the art baseline methods.10

Additionally, INQUIRE allows for customizable cost metrics to bias its selection11

of interaction types, enabling this algorithm to be tailored to a robot’s particular12

deployment domain and formulate cost-aware, informative queries.13

Keywords: Active Learning, Learning from Demonstration, Human-Robot Inter-14

action15

1 Introduction16

As we envision robots that adapt to novel tasks and environments after deployment, it is important to17

consider how they can efficiently obtain training data to address this novelty. For robots that operate18

in human spaces, the people around it can provide training data. Research in Interactive Robot19

Learning has yielded many effective methods for obtaining training data via interaction between a20

robot and a human teacher. While demonstrations are a popular type of interaction, other research21

has examined robot learning from preferences [1, 2], corrections [3, 4], and binary feedback [5].22

All of these interaction types differ according to how the agent queries the teacher, the constraints23

placed on the teacher’s feedback, and how the agent should interpret the teacher’s feedback as train-24

ing data [6]. In a demonstration, the teacher provides the trajectory that the robot should take starting25

from a particular state. By contrast, a preference query involves the robot proposing a number of26

possible trajectories, from which the teacher selects one. When seeking a correction, the robot27

demonstrates a single trajectory that the teacher can modify in whole or in part. Binary feedback28

again involves the robot demonstrating a single trajectory, but it only receives a positive or negative29

reward. As a result, the type of interaction used to query the teacher influences the training data30

available to the learning agent and subsequently influences the robot’s learning performance [6].31

Prior work in Active Learning has investigated how to formulate informative queries by maximizing32

the expected information gain resulting from the teacher’s feedback. However, this work typically33

assumes that the robot uses a single interaction type for all queries, and thus does not incorporate34

feedback obtained via multiple interaction types. Furthermore, the optimal interaction type depends35

on the robot’s task knowledge (which changes over time), the robot’s query state (i.e., its state within36

its environment at the time it queries the teacher), and domain-specific considerations (e.g., the time37

or effort required for a teacher to respond to each interaction type [7]).38

Our work is motivated by this question: How can a robot optimize both the type and content of its39

queries to a human teacher based on what information it needs at any given moment? We intro-40

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

duce INQUIRE: a robot learning system that performs this optimization by representing multiple41

interaction types in a single unified framework, enabling the robot to directly estimate and com-42

pare the expected information gain of its queries across multiple interaction types. We evaluated43

INQUIRE against two state-of-the-art interactive learning methods that use a single or fixed pattern44

of interaction types. We analyzed the effect of domain on INQUIRE’s performance and selection45

of interaction types over time by simulating four reward-learning problems in robotics domains.46

We found that INQUIRE learned reward functions that were more accurate and resulted in better47

task performance than either baseline, with particular strength in adapting to low-information query48

states (i.e., repeated states in which the robot has already received feedback).49

2 Related Works50

One popular approach to learning from human feedback is learning from demonstrations, either51

via imitation learning [8] or inverse reinforcement learning [9]. However, there is a wealth of other52

approaches to learning from human feedback, including learning from preferences [1, 2], labels [10],53

and corrections [4, 3]. Notably, these approaches optimize queries within a particular interaction54

type, typically by choosing queries that maximize volume removal [11] or maximize the information55

gain from the teacher’s response to that query [1]. Prior work has also investigated the use of fixed56

strategies for selecting interaction types; for example, requesting a fixed number of demonstrations57

before requesting preferences for the remaining queries [12, 13]. [14] incorporates more interaction58

types (demonstrations, labels, and feature queries) and contributes both rule-based and decision-59

theoretic strategies for query selection.60

The set of possible techniques to learn from human feedback is vast and varied, and several attempts61

have been made to impose a unifying and consistent framework across them. [7] identifies four pri-62

mary interaction archetypes (Showing, Categorizing, Sorting, and Evaluating) based on how people63

perceive them; [15] describes interactions in terms of the explicit and implicit information they con-64

vey; [6] situates interactions in the realm of human-in-the-loop learning and surveys how interaction65

types result in different effects on a teacher’s ability to provide informative feedback. Our work sim-66

ilarly contributes a perspective on the unifying and differentiating features of interaction types: we67

propose a generalized framework for computing information gain across multiple interaction types.68

We focus on four different interaction types corresponding to the archetypes in [7] and empirically69

show the effects of dynamically selecting interaction types in robot learning.70

3 Approach71

We define a query as a set of possible choices presented to the teacher, and feedback as the teacher’s72

selected choice in response to a query. Our goal is to enable a robot to (1) efficiently query a teacher73

using multiple interaction types, and (2) learn from feedback obtained via these interactions. We74

ground this goal in the problem of learning a distribution W over feature weight vectors ω ∈ W ,75

each resulting in a linear reward function r(t) = φ(t) · ω, where φ(t) is the feature vector of a76

trajectory t. Thus, our goal translates into (1) selecting queries and interaction types that minimize77

uncertainty overW , and (2) updatingW over feedback from multiple interaction types.78

We present INQUIRE (Alg. 1), an algorithm comprised of three key steps for each query: (1) se-79

lecting the optimal interaction type i and corresponding query q∗i that maximizes the information80

gain over the weight distributionW (approximated as the sample set Ω), (2) recording the teacher’s81

feedback to that query in a feedback set F, and (3) updating the weight distributionW such that it82

maximizes the likelihood of all feedback in F. To generalize across multiple interaction types, we83

must contend with the differing formulations of query and feedback corresponding to each type. We84

follow the framing presented in [6], where each interaction type consists of a query space Q(s) (the85

set of possible queries that may be posed by the agent in state s) and a choice space C(q) (the set of86

possible teacher feedback, i.e., the choices available to the teacher in response to a query q ∈ Q(s)).87

For a demonstration, let T (s) represent the set of all possible trajectories originating from the initial88

state s. The robot (implicitly) enables the teacher to demonstrate any trajectory in this set, and thus89

its query space is Q(s) = {T (s)} (i.e., a single query consisting of the entire trajectory space). The90

teacher’s choice space is C = T (s) (any trajectory within that space). For a preference, the robot91

queries the teacher with two trajectories q = {t0, t1 | t0, t1 ∈ T (s)} who then chooses either t092

2

Table 1: Each interaction involves separate query spaces, choice spaces, and choice implications.
Query
Space
Qi(s)

Query
q ∈ Qi(s)

Choice
Space
Ci(q)

Choice Implication
c ∈ Ci(q) =⇒ (c+, c−)

Demo. {T} T T c+ : t ∈ T c− : T \ t
Pref. T x T {t0, t1}, t0, t1 ∈ T {t0, t1} c+ : t ∈ {t0, t1} c− : {t0, t1} \ c+

Corr. T t ∈ T T c+ : t′ ∈ T c− : q

Binary T t ∈ T {0, 1} c = 0 =⇒ c+ : T \ q c− : q
c = 1 =⇒ c+ : q c− : T \ q

Algorithm 1 INQUIRE - Overview
Input: Set of query states S
Parameters: K (# of queries), I (interaction
types)
Output: Weight vector ω∗

1: F← {}
2: Ω←M random initial weight vectors
3: for K iterations do
4: s← next query state in S
5: q∗i ← generate query(s, I,Ω) (Alg. 2)

6: F← F ∪ {query teacher(q∗i)}
7: Ω← update weights(F)
8: ω∗ ← mean(Ω)
9: return ω∗

Algorithm 2 INQUIRE - Generate Query
Input: s (state), I (interaction types), Ω (weight samples)
Output: Query q∗

1: T← uniformly sample trajectories(s)
2: Compute E : {Et,t′,ω,∀t, t′ ∈ T, ω ∈ Ω} (Eq. 4)
3: for each interaction type i ∈ I do
4: Q← Qi(s) (See Table 1)
5: C← {Ci(q),∀q ∈ Q} (See Table 1)
6: Compute info gain matrix G(i) from E (Eq. 9)
7: q ← argmaxq′

∑
c∈Cq,ω∈Ω G(i)

q′,c,ω

8: g ← 1
log(λi)

∑
c∈Cq,ω∈Ω G(i)

q,c,ω

9: if information gain g > g∗ then
10: g∗ ← g
11: q∗ ← q {Store query with highest info. gain}
12: return q∗

or t1. The query space is Q(s) = T (s) x T (s) and the teacher’s choice space is C(q) = {t0, t1}.93

For a correction, the robot executes one trajectory q ∈ T (s) which the teacher then modifies to94

a preferable behavior. The agent’s query space is Q(s) = T (s) and the teacher’s choice space is95

C(q) = T (s). For binary feedback, the robot executes a single trajectory q ∈ T (s), and the teacher96

indicates a positive or negative reward. The agent’s query space is Q(s) = T (s) and the teacher’s97

choice space is C(q) = {0, 1}.98

The implication of the teacher’s choice c ∈ C(q) is a set of accepted trajectories c+ and set of99

rejected trajectories c−, which we define in Table 1 and use later to calculate information gain.100

Since the set of all possible trajectories originating from s (represented by T (s)) is potentially101

infinite, we approximate it as the set T containing N trajectory samples originating from the state s102

and consisting of randomly selected actions.103

3.1 Query Optimization104

When optimizing the agent’s query, our goal is to greedily select one that maximizes the agent’s105

expected information gain overW after receiving any feedback from the choice set (summarized in106

Alg. 2). Selecting a query involves optimizing over information gain (IG) as follows:107

q∗i = arg max
q∈Qi(s)

Ec|Ci(q) [IG(W | c)] (1)

= arg max
q∈Qi(s)

∑
c∈Ci(q)

∑
w∈Ω

[
P (c|w) · log

M · P (c|w)∑
w′∈Ω P (c|w′)

]
(2)

where Ω contains M samples of the distribution W . The expansion from Eq. 1 to 2 follows the108

derivation presented in [1]; see Appendix A.1 for intermediate steps. We adopt the commonly-used109

Boltzmann-rational equation to define P (c|ω):110

P (c|ω) =

∑
t∈c+ e

β·φ(t)·ω∑
t∈c+∪c− e

β·φ(t)·ω (3)

3

where φ(t) returns the feature trace of the trajectory t; that is, the sum over the feature vectors of all111

states visited in trajectory t.1 β is a parameter representing the expected optimality of the teacher’s112

feedback with respect to ω. We assign a value of β = 20 across all interaction types (selected113

through empirical evaluation).114

To minimize the computational complexity of solving for Eq. 2, we reformulate it as a series of115

operations over a |Q| x |C| x |Ω| probability matrix P, where Pq,c,ω represents the probability116

(according to weight sample ω ∈ Ω) that the teacher will select choice c in response to query q. To117

construct P, let E be a N x N x M (i.e., |T | x |T | x |Ω|) matrix representing exponentiated rewards:118

119

Et,t′,ω = eβ·φ(t′)·ω =⇒
[
E + ET

]
t,t′,ω

= eβ·φ(t′)·ω + eβ·φ(t)·ω (4)

With E in hand, we next define the probability matrices of each interaction type as follows:120

P(demo)
q,c,ω =

[
E0 �

∑
t∈T

ET
t

]
c,ω

(since |Q| = 1 for demonstrations) (5)

P(pref)
q,c,ω =

[(
E� (E + ET)

)T
,E� (E + ET)

]
c,q0,q1,ω

(c ∈ {0, 1} for prefs.) (6)

P(corr)
q,c,ω =

[
E� (E + ET)

]
q,c,ω

(7)

P(bnry)
q,c,ω =

[
1−

(
E0 � α

∑
t∈T

ET
t

)
,E0 � α

∑
t∈T

ET
t

]
c,q,ω

(c ∈ {0, 1} for binary rewards) (8)

where� represents an element-wise division of two matrices (i.e., (A�B)ij = Aij/Bij) and α is a121

normalization factor such that
∑
c P(bnry)

q,c,ω = 1. For derivations, see Appendix A.3. The main effect122

of this formulation is that it enables tractable optimization over multiple interaction types by123

sharing a common representation E. To solve for the optimal query q∗i using interaction type i, we124

use P(i) to construct a |Q| x |C| x |Ω| information gain matrix G(i):125

G(i)
q,c,ω = P(i)

q,c,ω · log

(
M ·P(i)

q,c,ω∑
ω′∈Ω P

(i)
q,c,ω′

)
q∗i = arg max

q

∑
c,ω

G(i)
q,c,ω (9)

We then solve for the optimal interaction type itself. To perform a cost-weighted optimization, with126

the aim of optimizing over both interaction cost and informativeness, λi may be set according to127

domain-specific cost factors (e.g., the time or mental load involved in answering a query) for each128

interaction type.2 To perform an unweighted optimization and maximize solely over the informa-129

tiveness of each query, let λi be a constant value over all interaction types i ∈ I.130

i∗ = arg max
i∈I

1

log(λi)

∑
c,ω

G(i)
q∗i ,c,ω

(10)

3.2 Update Weights from Feedback131

After presenting the optimal query to the teacher, the agent receives feedback and appends it to a132

feedback set F—a cumulative set that contains all feedback received by the agent thus far. Our goal133

is to then update the weight estimate such that it maximizes the likelihood of all feedback in F:134

ω∗ = arg max
ω

∏
c∈F

P (c|ω) = arg max
ω

∏
c∈F

∑
t∈c+ e

β·φ(t)·ω∑
t∈c+∪c− e

β·φ(t)·ω (11)

1See Appendix B.1 for each domain’s definition of φ.
2In our evaluations, we assign a cost of 20 to each demonstration, 15 to each correction, 10 to each prefer-

ence, and 5 to each binary query.

4

(a) Selected interaction types without cost-weighting

(b) Selected interaction types with cost-weighting

Figure 1: Heatmaps illustrating how INQUIRE selects different interaction types as it learns more
over time. These selections differ when deriving unweighted (top) or cost-weighted (bottom) in-
formation gain estimations. In the cost-weighted setting (bottom), INQUIRE selects more low-cost
binary queries than it does in the unweighted setting (top).

We calculate the gradient over ω by differentiating over its log-likelihood given F:135

∂`(ω)

∂ωj
=
∑
c∈F

[∑
t∈c+ β · φj(t) · eβ·φ(t)·ω∑

t∈c+ e
β·φ(t)·ω −

∑
t∈c+∪c− β · φj(t) · eβ·φ(t)·ω∑

t∈c+∪c− e
β·φ(t)·ω

]
(12)

=
∑
c∈F

[
β · φj(c+0)−

∑
t∈c+∪c− β · φj(t) · eβ·φ(t)·ω∑

t∈c+∪c− e
β·φ(t)·ω

]
(iff |c+| = 1) (13)

After receiving feedback from each query and updating F, we approximate Ω by randomly initial-136

izing and then performing gradient ascent on each weight sample ω ∈ Ω.137

4 Results138

We simulate four types of learning problems in robotics using an oracle teacher to obtain controlled139

evaluations. The oracle teacher, similar to INQUIRE, requires its own set of trajectory samples T ′. It140

then selects a response to a query via one of three mechanisms: returning the highest-reward trajec-141

tory from its choice space (demonstrations/preferences), rejection sampling of trajectories followed142

by selection of the trajectory with the highest reward-to-distance ratio from the queried trajectory143

(corrections), and returning whether a query meets or exceeds a reward threshold (binary feedback).144

Implementation details can be found in Appendix B.2.145

The Parameter Estimation domain involves directly estimating a randomly-initialized, ground146

truth weight vector ω∗ containing 8 parameters. The Linear Dynamical System domain, inspired147

by [1], simulates a controls problem and involves learning 8 parameters. The Lunar Lander domain148

simulates a controls problem involving 4 parameters. The Pizza Arrangement domain simulates149

a preference-learning problem involving 4 parameters. Each domain (except for Parameter Estima-150

tion) has a static-state and changing-state condition indicating whether the robot must formulate all151

queries from the same query state or not, respectively. For the full evaluation procedure and oracle152

implementation details for each domain see Appendix B.153

4.1 INQUIRE Query Selection154

We first analyze how INQUIRE selects queries. Figure 1 reflects the changes in interaction type155

selected by INQUIRE over time. Figure 1a first reports these interaction selections in an unweighted156

query optimization setting, where all interaction types are assumed to be equally costly. In the157

parameter optimization domain, INQUIRE requests corrections in the first 14-18 queries and then158

requests preferences as the remaining queries. Demonstrations were not enabled in this domain. In159

all other domains, INQUIRE requests a demonstration as its first query, then immediately switches160

5

(a) Linear Dynamical System

(b) Lunar Lander Task

(c) Pizza Arrangement Task

Figure 2: Metrics for the changing state condition in which the robot’s initial state changes with
each query. Error bars/regions represent variance across multiple evaluation runs with randomized
query states and initial weights.

to requesting preferences for the remaining queries (occasionally alternating between preferences161

and demonstrations in the Lunar Lander domain).162

After assigning different cost values to each interaction type, INQUIRE chooses more diverse inter-163

action types in order to maximize its information-to-cost ratio. As shown in Figure 1b, this typically164

results in INQUIRE posing more binary queries due to their relatively low cost. This pivot toward165

binary queries may occur at the start (as seen in the linear dynamical system), middle (as seen in the166

parameter estimation domain), or interspersed throughout the learning process (as seen in the lunar167

lander domain).168

4.2 Learning Performance169

We now analyze the effect of INQUIRE’s interaction type selections on its learning performance170

and compare to two types of baselines. The first, DemPref [12], learns from 3 demonstrations and171

then learns from preference queries by using a volume removal objective function. As our second172

baseline, we compare INQUIRE against agents that use only one form of interaction: demonstra-173

tions, preferences, corrections, or binary feedback. Note that the preference-only agent is formulated174

according to [1] and thus represents this baseline method.175

We first consider the changing-state formulation of each domain, where the robot is presented with a176

new state for each query. Since the Parameter Estimation domain does not contain states, we exclude177

it from this first set of results. Figure 2 illustrates this learning performance in the Linear Dynamical178

System and Lunar Lander domains according to three key metrics. Distance measures the angular179

distance between the ground truth feature weights (ω∗) and the algorithm’s estimated feature weight180

ω̃ after each query. Performance measures the task reward achieved using a trajectory optimized181

according to ω̃ (the algorithm’s estimated feature weight after each query). Performance is scaled182

between 0-1, with 0 and 1 representing the worst and best possible task rewards according to ω∗,183

6

(a) Parameter Estimation Task

(b) Linear Dynamical System

(c) Lunar Lander Task

(d) Pizza Arrangement Task

Figure 3: Metrics for the static state condition in which the robot is presented with the same state for
all 20 queries. Error bars/regions represent variance across multiple evaluation runs with randomized
query states and initial weights.

respectively. Note that INQUIRE’s distance and performance metrics are achieved in the unweighted184

condition. Cost-vs-Distance measures the relationship between the cumulative cost of each query185

and the resulting distance between ω̃ and ω∗ after each query. INQUIRE’s metrics in this graph are186

achieved in the cost-weighted condition.187

Figure 3 presents the same three metrics for the static-state condition in which all 20 queries must be188

selected from the same initial state. Finally, we quantify these graphs by reporting the area-under-189

the-curve (AUC) metrics for the distance, performance, and cost curves across all tasks. These190

metrics are available in Appendix C. The AUC metrics indicate that, compared to the baseline meth-191

ods, INQUIRE results in the best average learning performance (measured both by the distance192

and performance plots in Figures 2-3) across all domains and dominates learning performance in193

the static-state domains. INQUIRE also results in the best average distance-to-cost ratio across all194

domains.195

7

5 Discussion196

The results show the importance of dynamically selecting interaction types according to the robot’s197

current state. For example, demonstrations can be highly informative when provided in novel states,198

but when the robot may only query a teacher from a single state, multiple demonstrations are likely to199

be very similar (if not identical). As a result, receiving multiple demonstrations in a static query state200

is uninformative. We see the benefits of dynamically selecting interaction types in Figure 3, where201

INQUIRE outperforms all single-interaction methods by optimizing both query type and content to202

maximize the informativeness of the query feedback.203

INQUIRE selects the interaction type that, after receiving feedback, minimizes the entropy over its204

distribution of weight estimatesW . This distribution thus serves as a representation of the robot’s205

current model of the task reward. Figure 1a illustrates how INQUIRE changes the query type as206

it learns over time (represented by # of queries). This is particularly evident in the Parameter Es-207

timation task, where the algorithm originally requests corrections until it has refined its model of208

the task reward to a point where preferences become more informative (after 14-18 queries). Over-209

all, dynamically adapting to the robot’s model of the task reward results in better performance than210

adopting a fixed strategy for selecting interaction types (i.e., DemPref, which always requests one211

demonstration before selecting preferences).212

An added benefit of INQUIRE is that it can incorporate a cost metric to identify cost-aware, infor-213

mative queries. The AUC metrics for the cost graphs indicates that INQUIRE selects queries that,214

on average, minimize the cost-to-distance ratio across all domains. We expect that this cost metric215

is domain-specific, and can represent a number of human factors that the algorithm should take into216

account (e.g., the effort involved for a human to respond to each query type [6]). The cost metric217

used in our study thus serves as an example of how INQUIRE can factor in interaction costs.218

6 Limitations219

Our evaluation is performed using feedback from an optimal oracle. Real human feedback, however,220

is likely to be at least somewhat sub-optimal, and its severity likely depends on the interaction type.221

For example, a non-optimal demonstration may be one that is sufficient but not ideal for completing222

the task. In contrast, binary rewards offer only two feedback choices to the user, and thus a non-223

optimal binary reward may indicate the opposite information from what the user intended to convey.224

These examples illustrate how non-optimal feedback may need to be handled differently depending225

on the interaction type, and thus, should affect INQUIRE’s estimation of information gain. Further-226

more, INQUIRE does not yet have the ability to select the state in which it queries the teacher. Prior227

work in Active Learning has shown that state selection can improve the informativeness of resulting228

demonstrations [16], and we expect that optimizing over the query state in addition to query type229

and content would improve the performance of INQUIRE.230

7 Conclusion231

We introduced INQUIRE, an algorithm enabling a robot to dynamically optimize its queries and232

interaction types according to its task knowledge and its state within the environment. We showed233

that using information gain to select not just optimal queries, but optimal interaction types, results234

in consistently high performance across multiple tasks and state configurations. Future work will235

include formal user studies to investigate our method’s efficacy with people of varied skillsets and236

comfort with robots; incorporation of novel interaction types and other communication modalities;237

and alternative representations of the reward function and feature spaces. Moreover, we are excited238

at the possible extensions others might present by using our open-source framework3 for evaluating239

and comparing active-learning agents across multiple environments and simulated teachers.240

3Link removed for anonymous review

8

References241

[1] E. Biyik, M. Palan, N. C. Landolfi, D. P. Losey, and D. Sadigh. Asking easy questions: A242

user-friendly approach to active reward learning. In Conference on Robot Learning (CoRL),243

pages 1177–1190, 2020.244

[2] C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz. A survey of preference-based reinforce-245

ment learning methods. The Journal of Machine Learning Research, 18(1):4945–4990, 2017.246

[3] T. Fitzgerald, E. Short, A. Goel, and A. Thomaz. Human-guided trajectory adaptation for247

tool transfer. In Intl. Conf. on Autonomous Agents and MultiAgent Systems, pages 1350–1358,248

2019.249

[4] A. Bajcsy, D. Losey, M. O’Malley, and A. Dragan. Learning robot objectives from physical250

human interaction. Proceedings of Machine Learning Research, 78:217–226, 2017.251

[5] C. Celemin and J. Ruiz-del Solar. An interactive framework for learning continuous actions252

policies based on corrective feedback. Journal of Intelligent & Robotic Sys., 95(1):77–97,253

2019.254

[6] Y. Cui, P. Koppol, H. Admoni, S. Niekum, R. Simmons, A. Steinfeld, and T. Fitzgerald. Un-255

derstanding the relationship between interactions and outcomes in human-in-the-loop machine256

learning. 2021.257

[7] P. Koppol, H. Admoni, and R. Simmons. Interaction considerations in learning from humans.258

Under Review, 2021.259

[8] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning260

methods. ACM Comput. Surv., 50(2), apr 2017. ISSN 0360-0300. doi:10.1145/3054912. URL261

https://doi.org/10.1145/3054912.262

[9] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In ICML, vol-263

ume 1, page 2, 2000.264

[10] C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters. Active reward learning. In Robotics:265

Science and Systems, 2014.266

[11] D. Sadigh, A. Dragan, S. Sastry, and S. A. Seshia. Active preference-based learning of reward267

functions. In RSS, 2017.268

[12] M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh. Learning reward functions by integrat-269

ing human demonstrations and preferences. RSS, 2019.270

[13] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from human271

preferences and demonstrations in atari. NeurIPS, 31:8011–8023, 2018.272

[14] K. Bullard, A. L. Thomaz, and S. Chernova. Towards intelligent arbitration of diverse active273

learning queries. In IROS, pages 6049–6056, 2018.274

[15] H. J. Jeon, S. Milli, and A. D. Dragan. Reward-rational (implicit) choice: A unifying formalism275

for reward learning. In NeurIPS, 2020.276

[16] M. S. Lee, H. Admoni, and R. Simmons. Machine teaching for human inverse reinforcement277

learning. Frontiers in Robotics and AI, 8:188, 2021.278

9

http://dx.doi.org/10.1145/3054912
https://doi.org/10.1145/3054912

A Approach Details279

A.1 Information Gain Derivation280

Ec|Ci(q) [IG(W | c)] (14)

=EW,c|Ci(q)

[
log

P (c|W)

P (c)

]
(15)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w|c) · log

P (c|w)

P (c)

]]
(16)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w)P (c|w)

P (c)
· log

P (c|w)

P (c)

]]
(17)

=
∑

c∈Ci(q)

∑
w∈W

[
P (w)P (c|w) · log

P (c|w)

P (c)

]
(18)

=
∑

c∈Ci(q)

∑
w∈W

[
P (w)P (c|w) · log

P (c|w)∑
w′∈W P (w′)P (c|w′)

]
(19)

≈ 1

M

∑
c∈Ci(q)

∑
w∈Ω

[
P (c|w) · log

M · P (c|w)∑
w′∈Ω P (c|w′)

]
(20)

Standard information gain equation:281

IG(X, y) (21)
= H(X)−H(X|y) (22)
= −Ex|X logP (x) + Ex|X,ylogP (x|y) (23)

=
∑
x∈X

P (x|y) · logP (x|y)−
∑
x∈X

P (x) · logP (x) (24)

Best query is returned by:282

max
q∈Q

Ec|Ci(q) [IG(W, c)] (25)

10

Which we evaluate as follows:283

Ec|Ci(q) [IG(W, c)] (26)

= H(W)− Ec|Ci(q) [H(W|c)] (27)

= −EW [logP (W)] + EW,c|Ci(q) [logP (W|c)] (28)

= EW,c|Ci(q) [logP (W|c)− logP (W)] (see proof in Sec. A.1.1) (29)

= EW,c|Ci(q)

[
log

P (W|c)
P (W)

]
(30)

= EW,c|Ci(q)

[
log

P (c|W)

P (c)

]
(by Bayes’ rule) (31)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w|c) · log

P (c|w)

P (c)

]]
(32)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w)P (c|w)

P (c)
· log

P (c|w)

P (c)

]]
(33)

=
∑

c∈Ci(q)

∑
w∈W

[
P (w) · P (c|w) · log

P (c|w)

P (c)

]
(34)

=
∑

c∈Ci(q)

∑
w∈W

[
P (w) · P (c|w) · log

P (c|w)∑
w′∈W P (w′) · P (c|w′)

]
(35)

≈ 1

M

∑
c∈Ci(q)

∑
w∈Ω

[
P (c|w) · log

M · P (c|w)∑
w′∈Ω P (c|w′)

]
(36)

Where Ω contains M samples of the distributionW .284

A.1.1 Proof of Eq. 29285

EW,c|Ci(q) [logP (W|c)]− EW [logP (W)] (37)

=

∑
w∈W

P (w)
∑

c∈Ci(q)

P (c|w) · logP (w|c)

− [∑
w∈W

P (w) · logP (w)

]
(38)

=
∑
w∈W

P (w) ·

 ∑
c∈Ci(q)

P (c|w) · logP (w|c)

− logP (w)

 (39)

=
∑
w∈W

P (w) ·

 ∑
c∈Ci(q)

P (c|w) · logP (w|c)−
∑

c∈Ci(q)

P (c|w) · logP (w)

 (40)

=
∑
w∈W

P (w) ·
∑

c∈Ci(q)

P (c|w) · [logP (w|c)− logP (w)] (41)

= EW,c|Ci(q) [logP (W|c)− logP (W)] (42)

A.2 KL Divergence286

Standard KL divergence equation:287

KL(P ||Q) =
∑
x∈X

[
P (x) · log

P (x)

Q(x)

]
(43)

Best query is returned by:288

max
q∈Q

Ec|Ci(q) [KL(P (W|c)||P (W))] (44)

11

Which we evaluate as follows:289

Ec|Ci(q)KL (45)

= Ec|Ci(q) [KL(P (W|c)||P (W))] (46)

= Ec|Ci(q)

[∑
w∈W

[
P (w|c) · log

P (w|c)
P (w)

]]
(47)

= Ec|Ci(q)

[∑
w∈W

[
P (w|c) · log

P (c|w)

P (c)

]]
(48)

=
∑

c∈Ci(q)

[
P (c)

∑
w∈W

[
P (w|c) · log

P (c|w)

P (c)

]]
(49)

Which is equivalent to Eq. 32.290

A.3 Probability Matrix Derivations291

In the demonstration case, we can define P as follows:292

P(demo)
q,c,ω =

eβ·φ(c+)·ω∑
t∈q e

β·φ(t)·ω (50)

=
eβ·φ(c+)·ω∑
t∈T e

β·φ(t)·ω (since q = T for demonstrations) (51)

=
ET

0,c+,ω∑
t∈T ET

0,t,ω
(52)

=

[
ET

0 �
∑
t∈T

Et

]
q,c,ω

(since there is a 1-1 correlation between c and c+ in demos) (53)

where � represents an element-wise division of two matrices (i.e., (A�B)ij = Aij/Bij).293

In the preference case:294

P(pref)
q,c,ω =

eβ·φ(c+)·ω∑
t∈q e

β·φ(t)·ω (54)

=
eβ·φ(c+)·ω

eβ·φ(q0)·ω + eβ·φ(q1)·ω (since q = (q0, q1) in preferences) (55)

Since c0 =⇒ c+ = q0 and c1 =⇒ c+ = q1: (56)

=

[
eβ·φ(q0)·ω

eβ·φ(q0)·ω + eβ·φ(q1)·ω ,
eβ·φ(q1)·ω

eβ·φ(q0)·ω + eβ·φ(q1)·ω

]
c

(57)

=

[
Eq0,q1,ω

[E + ET]q0,q1,ω
,

ET
q0,q1,ω

[E + ET]q0,q1,ω

]
c

(58)

=
[
E� (E + ET),ET � (E + ET)

]
c,q0,q1,ω

(59)

In the corrections case:295

P(corr)
q,c,ω =

eβ·φ(c+)·ω

eβ·φ(c+)·ω + eβ·φ(q0)·ω (since c 6∈ q and |q| = 1 in corrections) (60)

=
ET
q,c,ω

[E + ET]q,c,ω
(since there is a 1-1 correlation between c and c+ in corrections) (61)

=
[
ET � (E + ET)

]
q,c,ω

(62)

12

In the binary feedback case, we compare the likelihood of the teacher demonstrating q to the average296

likelihood of demonstrating any other trajectory in T :297

P(bnry)
q,c,ω =

[
1−P(demo)

T,q,ω

α (|T | − 1)
,
P(demo)
T,q,ω

α

]
c

(where α is a normalization factor s.t.
∑
c

P(bnry)
q,c,ω = 1) (63)

=

[
1−

P(demo)
T,q,ω

α
,
P(demo)
T,q,ω

α

]
c

(64)

=

[
1−

(
ET

0 � α
∑
t∈T

Et

)
,ET

0 � α
∑
t∈T

Et

]
c,q,ω

(65)

where α =
1−P(demo)

T,q,ω

|T |−1 + P(demo)
T,q,ω298

A.4 Gradient Derivation299

`(ω) = log
∏
c∈F

∑
t∈c+ e

β·φ(t)·ω∑
t∈c+∪c− e

β·φ(t)·ω =
∑
c∈F

[
log

∑
t∈c+ e

β·φ(t)·ω∑
t∈c+∪c− e

β·φ(t)·ω

]
(66)

=
∑
c∈F

[
log

(∑
t∈c+

eβ·φ(t)·ω

)
− log

(∑
t∈c+∪c−

eβ·φ(t)·ω

)]
(67)

A.5 Training Parameters300

We set a high convergence threshold (10−3) when converging each weight sample in order to main-301

tain sparsity within Ω (which becomes less sparse as F grows with more queries), and then fully302

converge (threshold 10−6) to report the weight estimate ω̃ after each query.303

Step size of 5x10−4. (alpha set to 0.75 in our experiments) We enforce ∀ω ∈ W, ||ω|| = 1. Define304

N, M, K, etc305

B Evaluation Details306

B.1 Domain Implementations307

Domain #1: Parameter Estimation This task involves directly estimating a randomly-initialized,308

ground truth weight vector ω∗ containing 8 parameters. This represents a generic learning problem309

relevant to many robotics tasks, such as learning the relative importance between task outcomes310

according to a user’s preference. There is no “state” in this domain, and each “trajectory” consists311

of a single sample of the weight vector. As a result, we do not enable demonstration queries in312

this domain, as the resulting feedback would be akin to directly providing ω∗ to the algorithm. The313

feature representation φ of a sample returns the sample itself. Since ||ω|| = ||ω∗|| = 1, the reward314

of any sampled weight vector directly reflects the cosine similarity between it and the ground truth315

vector (r(ω) = ω · ω∗ = cos(θ)).316

Domain #2: Linear Dynamical System We consider a simplified Linear Dynamical System rep-317

resenting a robot that optimizes its controls according to a learned task objective. We represent the318

dynamics of the robot’s state x as dx/dt = Ax(t) using a randomized dynamics matrix A. An319

optimal control vector is one that results in a trajectory of states maximizing 1
|T |
∑
s∈T φ(s) · ω∗.320

We define the feature representation φ(s) of a state s as the concatenation of the element-wise, ab-321

solute difference between x(t) and the goal state, and the dynamics u(t). We experiment with an322

8-dimensional feature-space (4 state elements and 4 corresponding controls).323

In a demonstration query, the oracle provides a trajectory (produced by simulating the execution324

of a control vector) from the initial state that maximizes the total reward. In a preference query,325

the algorithm proposes two trajectories and the oracle selects the higher-rewarding option of the326

two. In a corrections query, the algorithm proposes a trajectory and the oracle returns a trajectory327

13

that maximizes the reward-to-similarity ratio. In a binary feedback query, the algorithm proposes a328

trajectory and the oracle indicates whether it results in reward that exceeds its internal threshold.329

Domain #3: Lunar Lander We define a ω∗ that results in a Lunar Lander agent efficiently moving330

from its start state to an upright pose on the landing pad. We use the same feature representation as331

in [12], consisting of four features: the lander’s angle, velocity, distance from the landing pad, and332

final position with respect to the landing pad. We implement each query type in the same manner as333

in the Linear Dynamical System.334

Domain #4: Pizza Arrangement We approximate a preference-learning task in which the robot335

learns to place toppings on only the left side of a pizza, with uniform spacing between them. We336

define each “trajectory” as the next action the robot should take from the current pizza state; thus,337

the trajectory is defined as the (x, y)-coordinate of the next topping to be placed. The feature rep-338

resentation consists of four features: the x and y position of the topping, its distance to its nearest-339

neighboring topping, and the difference between that distance and 4cm.340

B.2 Oracle Implementation341

When responding to a query, the oracle requires its own set of trajectory samples. Similar to IN-342

QUIRE, we derive this set by uniformly sampling N trajectories; however, the two sample sets are343

kept separate, and so we distinguish the oracle’s trajectory set as T ′ (resampled for each query state).344

Demonstration/Preferences The oracle returns the highest-reward trajectory (according to ω∗)345

from a uniformly-sampled trajectory set T ′ (for demonstrations) or from the pair of queried tra-346

jectories C(q) (for preferences):347

Oracledemo(s) = arg max
t∈T ′

(φ(t) · ω∗) Oraclepref(s) = arg max
t∈C(q)

(φ(t) · ω∗) (68)

Corrections The oracle produces T ′ by performing rejection sampling; it uniformly samples trajec-348

tories and accepts only those with a reward greater than or equal to the queried trajectory q until T ′349

contains N trajectories:350

∀t ∈ T ′, φ(t) · ω∗ ≥ φ(q) · ω∗ (69)
After producing this trajectory set, the oracle selects the trajectory with the highest ratio of reward-351

to-distance from the queried trajectory:352

Oraclecorr(s) = arg max
t∈T ′

∆r(t)

∆d(t)
(70)

353

∆r(t) = min
t′∈T ′

φ(t) · ω∗ − φ(q) · ω∗

φ(t′) · ω∗ − φ(q) · ω∗
∆d(t) = min

t′∈T ′
eδ(t,q)

eδ(t′,q)
(71)

The distance metric δ between two trajectories is domain-specific; see the Appendix for details.354

Binary Feedback The oracle produces T ′ by uniformly sampling N trajectories and produces a355

cumulative distribution R over ground-truth rewards for T ′. It then selects a positive or negative356

reward indicating whether the agent’s query q meets or exceeds a threshold percentile α:357

R = {ω∗ · φ(t),∀t ∈ T ′} Oraclebnry(s) =

{
+ R(ω∗ · φ(q)) ≥ α
− otherwise

(72)

B.3 Evaluation Procedure358

C AUC Tables359

14

Algorithm 3 Evaluation Procedure
Input: generate query and update weights methods according to algorithm being tested
Parameters: K (# of queries), I (# of tasks), J (# of runs per task), X (# of test states per
task),

1: for each of I tasks do
2: Generate ground truth reward function ω∗
3: Generate X test states
4: Generate K query states
5: Compute optimal trajectory tmax for each test case using ω∗
6: Compute least-optimal trajectory tmin for each test case using ω∗
7: for each of J runs do
8: for each of K queries do
9: s← next query state

10: q∗ ← generate query(s, I,Ω)
11: F← F+ query oracle(q∗)
12: Ω← update weights(F)
13: ω̃ ← mean(Ω)

14: Record distance: arcccos(ω̃·ω∗)
π

15: for each of X test states do
16: Compute optimal trajectory t from the test state according to ω̃
17: Record performance: φ(t)·ω∗−φ(tmin)·ω∗

φ(tmax)·ω∗−φ(tmin)·ω∗

(a) AUC values for the distance plots, with darker cells indicating lower (better) values.

(b) AUC values for the performance plots, with darker cells indicating higher (better) values.

(c) AUC values for the cost plots, with darker cells indicating lower (better) values.

Figure 4: Area-Under-the-Curve (AUC) values summarizing Figures 2-3

15

	Introduction
	Related Works
	Approach
	Query Optimization
	Update Weights from Feedback

	Results
	INQUIRE Query Selection
	Learning Performance

	Discussion
	Limitations
	Conclusion
	Approach Details
	Information Gain Derivation
	Proof of Eq. 29

	KL Divergence
	Probability Matrix Derivations
	Gradient Derivation
	Training Parameters

	Evaluation Details
	Domain Implementations
	Oracle Implementation
	Evaluation Procedure

	AUC Tables

